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Abstract. We present numerical results on transport properties in quasi-one-dimensional (1D)
double-chain systems in a magnetic field obtained by the use of the transfer-matrix technique. The
two chains are coupled with bonds in random positions which mimic the topological disorder in
the quasi-1D polymer system. There are two scattering mechanisms: the random positions of the
interchain coupling and the random flux through the loops. We find that the former is suppressed
by quantum interference if the interchain coupling at every link is formed by double-bond hopping,
leading to the existence of extended states in the absence of a magnetic field. These states do not
exist in the case of single-bond coupling. This difference between the two cases disappears in a
strong field. The formula for the transmission coefficient is obtained from the numerical results in
both cases.

1. Introduction

Conjugated polymers have been extensively studied recently because of their increasing
importance in both fundamental and applied research. It has been predicted from the scaling
theory that all the states are localized in one dimension (1D) with a small amount of disorder [1].
However, extended states have been verified in several specific 1D models. Completely
reflectionless states, which have unit transmission and zero reflection, exist in the 1D random-
dimer model [2]. Similar delocalized states, or completely unscattered states, have also been
found in other 1D systems with correlated disorder [3–6]. The electronic transport properties of
quasi-1D winding chains with random loops display groups of states with very long localization
lengths which can lead to high values of the conductance [7]. The electronic diffusion in
quasi-1D systems with double chains and randomly placed interchain bonds can support high
conductance [8].

The delocalization features of the above-mentioned states are mainly determined by the
specific interference of waves scattered by the impurities. As an example, for the resonance
states in the random-dimer model the waves scattered by two impurities in a dimer are cancelled
by the destructive interference, resulting in complete transmission. In the presence of a
magnetic field the phases of electron waves depend also on the magnetic flux in a quasi-
1D double-chain system. It would be interesting to know how the properties of states in
such systems in which nearly extended states exist will be changed if a magnetic field is
applied. In this paper we study the transport properties of double-chain systems in a magnetic
field. The positions of interchain links are random, leading to topological disorder. In the
absence of a magnetic field the systems in which the interchain coupling is formed with double-
bond coupling exhibit delocalized properties, while the systems with single-bond interchain
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coupling show insulating behaviour [8]. In the presence of a magnetic field the condition for
the destructive interference of backward-scattered waves in the double-bond case is violated,
leading to the destruction of the extended states. On changing the magnetic field, the Aharonov–
Bohm (AB) oscillations exist only in the periodic systems. With disordering of the distribution
of the bonds, the AB oscillations are suppressed in both single-bond and double-bond situations.
From the results of numerical calculations, we obtain a formula for the dependence of the
transmission coefficient (TC) on energy, field, strength of interchain coupling and system
size in random systems with both double-bond and single-bond interchain coupling. The
present model can be related to the transport properties of two coupled polymer chains and
other quasi-1D systems of quantum wires or nanotubes for which it has become possible to
artificially separate the chains from each other in recent years.

In this paper we describe our model and the basic formulae in the next section, the
numerical data obtained are analysed in the third section, and the conclusions are summarized
in the last section.

2. Model and formula

The topological structure of the two-chain system is illustrated in figure 1. The two chains are
wound, and cross each other to form many loops. We suppose that these loops are in the same
plane and the enclosed area of a loop is proportional to its perimeter. The magnetic field is
perpendicular to the plane. The tight-binding Hamiltonian of the system can be written as

H = H0 + Hc (1)

where H0 is the Hamiltonian of the isolated chains:

H0 =
∑
l=1,2

Nl−1∑
i=1

t0(c
†
i+1,lci,l + H.c.) (2)

with ci,l being the annihilation operator of an electron on the ith site of the lth chain, andHc the
coupling Hamiltonian of the two chains. Here Nl is the site number of the lth chain. We omit
the spin index of the electrons. For the interchain coupling we consider two situations: the
single-bond and double-bond coupling. For the case of single-bond coupling, the two chains

ba

Figure 1. The topological structure of the double-chain system. The single bond and double bonds
at a crossing point are shown in panels (a) and (b), respectively.
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are coupled with one bond at every crossing point and Hc can be written as

Hc = Hsb =
Nb∑
n=1

(tnc
†
jn1,1

cjn2,2 + H.c.) (3)

where n is the index of interchain bonds, jn1 and jn2 are the positions of the nth interchain
bond in the first and second chains, respectively, tn is the hopping integral of the nth interchain
bond. In the case of double-bond coupling we have

Hc = Hdb =
Nb∑
n=1

[tn(c
†
jn1,1

cjn2,2 + c
†
jn1+1,1cjn2+1,2) + H.c.]. (4)

In both cases the positions of the nth interchain link jn1 and jn2 are random. We assume that
j1l < j2l < · · · < jNb,l and the lengths of the chain segments between the nth and the (n+ 1)th
interchain bonds are denoted as λnl ≡ jn+1,l − jnl for l = 1, 2 and 1 � n � Nb. In this paper
we use a uniform distribution for random variables λnl :

P(λnl) =



1

δλ
for λ0 − δλ/2 � λnl � λ0 + δλ/2

0 otherwise

where λ0 is the average segment length and δλ is the degree of topological disorder.
In the presence of a magnetic field the flux threaded in every loop produces a phase shift

of the wave function in the two chains. We use a special gauge in which the phase produced
by the flux appears only in the interchain coupling terms of the Hamiltonian. Thus the t0 in
H0 is unchanged by the field and tn in Hc becomes

tn = teiφn (5)

where φn is determined by φn+1 − φn = 2π(−1)n�n/�0 with �n being the flux threaded
through the loop enclosed by the n and (n + 1)th crossing points and �0 the flux quantum.
The sign in this expression is due to the alternating exchange of positions of the two chains
in successive loops. In the case of t = 0, the phase of eiφn is directly introduced into the
coefficients of the wave functions at the crossing points to account for the effect of flux.
Owing to the topological disorder, the positions of the interchain links are random variables
which determine the values of φn.

We employ the transfer-matrix technique [8] to calculate the transmission coefficient of
an electron moving through the system. The system contains two chains with finite lengths.
We use an open boundary condition: that is, the four ends of the two finite chains of the system
are respectively connected to four semi-infinite perfect chains without interchain coupling
which serve as the incoming and outgoing leads. In each of the leads there are two channels
corresponding to two semi-infinite chains. The Nb interchain links divide the whole system,
including the leads, into 2(Nb + 1) segments. In each of the segments the wave function can
be expressed as plane waves because the structure is regular within the segment. Thus, in the
case of single-bond links we can write the coefficients of the wave function as

�i,l = An,le
ik(i−jn−1,l ) + Bn,le

−ik(i−jn−1,l ) for jn−1,l � i � jn,l (6)

where

k = cos−1 E

2t0
is the wave vector with E the energy of the electron. Thus, An,l and Bn,l specify the wave
function in the segment between the (n − 1)th and the nth interchain bonds in the lth chain.
This expression can be extended to n = 1 and n = Nb +1 by including the leads. In the case of
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double-bond coupling, equation (6) is still valid on changing the limit to jn−1,l + 1 � i � jn,l .
The Schrödinger equation is used to determine the relations between the coefficients An,l , Bn,l

and An+1,l , Bn+1,l which can be written in the transfer-matrix form

An,1

Bn,1

An,2

Bn,2


 = T̂n



An−1,1

Bn−1,1

An−1,2

Bn−1,2


 .

With the recursive use of the transfer matrices we obtain

ANb,1

BNb,1

ANb,1

BNb,1


 =

Nb∏
n=1

T̂Nb−n+1



A0,1

B0,1

A0,2

B0,2


 ≡ T̂



A0,1

B0,1

A0,2

B0,2


 .

In the case of single-bond coupling, the transfer matrix T̂n+1 is

T̂n+1 = 1

2it0 sin(k)




a1 0 −b2eiφn −b∗
2eiφn

0 −a∗
1 b2eiφn b∗

2eiφn

−b1e−iφn −b∗
1e−iφn a2 0

b1e−iφn b∗
1 te

−iφn 0 −a∗
2


 (7)

where

al = 2i sin(k)eik(jn,l−jn−1,l )t0 bl = teik(jn,l−jn−1,l ).

For the double-bond coupling the transfer matrix becomes

T̂n+1 = 1

2it0 sin(k)




a1 0 −2b2eiφn −2c2eiφn

0 −a∗
1 2c∗

2eiφn 2b∗
2eiφn

−2b1e−iφn −2c1e−iφn a2 0

2c∗
1e−iφn 2b∗

1 te
−iφn 0 −a∗

2


 (8)

where

cl = te−ik(jn,l−jn−1,l−1) cos(k).

Since there are two channels in every lead, the transmission of the electrons from the incoming
lead to the outgoing lead is characterized by the 2 × 2 transmission matrix M̂ in which every
element stands for the probability of transmission of a plane wave from one incoming channel
to an outgoing channel. After a straightforward calculation, the transmission matrix can be
expressed as

M̂i,j = T̂i4T̂i ′j ′ T̂4j − T̂i2T̂i ′4T̂4j − T̂i4T̂i ′j T̂4j ′ + T̂ij T̂i ′4T̂4j ′ + T̂ij ′ T̂i ′j T̂44 − T̂ij T̂i ′j ′ T̂44

(−1)i+j+1(T̂22T̂44 − T̂24T̂42)
(9)

where

i ′ =
{

2 for i = 1

3 for i = 2
j ′ =

{
2 for j = 1

3 for j = 2.

The conductance is proportional to TC which can be expressed as

TC = Tr M̂†M̂. (10)

Since there are two channels in this open system, the maximum value of TC is 2.
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3. Calculated results for the single-bond and double-bond cases

The topological disorder of the present systems is due to the random positions of the interchain
coupling. Thus, in the absence of the magnetic field the degree of disorder depends on the
strength of the interchain hopping t . In the calculations, we generate the random configurations
from the probability P(λnl). The results are averaged over 100 runs and the variance is shown
by error bars in the figures. In figure 2 we plot the dependence of the transmission coefficient
on the strength of t . We can see that TC generally decreases with the increase of |t | for
both the double- and single-bond cases. This is expected from the fact that the degree of
disorder is increased with |t |. However, there is an essential difference between the double-
and single-bond cases. In the double-bond case, TC is almost unchanged by increasing |t |
when |t | is smaller than 0.75t0. In the absence of a magnetic field the transmission of electrons
is almost complete in this range of t , reflecting the existence of extended states as illustrated
in reference [8]. On applying the magnetic field, TC decreases from the value for perfect
transmission due to the increase of randomness caused by the random flux threaded through
the loops, but the dependence of TC on the strength of t is still weak. This implies that the
effect of scattering of electrons by the interchain coupling is almost cancelled by the quantum
interference from the double-bond structure as indicated in reference [8], even in the presence
of the magnetic field. In the magnetic field the spreading of TC for random configurations
under the same distribution is much wider because of the large fluctuations of flux through
the loops. In the case of single-bond coupling, TC is rapidly decreased by increasing |t |, as
expected from the localization of electrons due to the topological disorder. For small |t | one
has (1 − TC)/TC ∝ t2. This relation suggests that the strength of the scattering at every
crossing point is proportional to t2. In the presence of a magnetic field this relation is still
valid, but the value of TC decreases because of the additional disorder due to the randomness
of the flux. In this case the spreading for the random configurations is narrower than that of the
double-bond case, reflecting that the role of the scattering by the crossing points is dominant
over the role of random flux in the case of the single-bond coupling and relatively small field.

In figure 3 we plot TC as a function of the energyE of the incident electron. It can be seen
that the E-dependence is similar to the t-dependence of TC. In the absence of a magnetic field
the reflectionless states exist over a wide range of energy for the double-bond case, while the
value of TC is much smaller and linearly decreases withE2 in the case of single-bond coupling.
On applying a magnetic field, TC decreases in both cases due to the additional disorder of the
random flux. In the double-bond case, TC is almost independent of E but the spreading of TC
for random configurations is much wider. In the single-bond case, the linear dependence of
TC on E2 is still valid.

In figure 4 we display the dependence of TC on the strength of the magnetic field. We
can see clearly that the transmission coefficient exponentially decreases with the square of the
magnetic field in both the double-bond and single-bond cases. The B-dependence of TC is
the same for the two cases due to the fact that the magnetic field causes randomness in the
flux which is independent of the structure of the interchain bonds. In the single-bond case the
value of TC is reduced due to the scattering at the crossing points. In order to investigate the
scaling behaviour of the electronic states, in figure 5 we show the dependence of TC on the
size of the system. In the case of double-bond coupling, except for slight oscillations as shown
in the inset, TC is on average independent of the system size in the absence of a magnetic
field, verifying again the existence of the extended states. On applying the magnetic field, the
disorder from the random flux of the loops is introduced and TC exhibits strictly exponential
decay with the system size, implying the destruction of the extended states by the magnetic
field. In the case of single-bond coupling there is no essential difference in scaling behaviour
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Figure 2. The transmission coefficient (TC) as a function of the interchain hopping potential t in
units of t0 (main panel). E = 0.2t0, N = 40, λ0 = 300, and δλ = 200. The curves correspond
to averages over 100 random configurations and the variances are shown by error bars. The lattice
spacing for calculation of the flux is 3 Å. We show the dependence of (1 − TC)/TC on t2 in the
insets.

between the cases for the presence and absence of the magnetic field, indicating that the states
were already localized before the field was applied.

By summarizing the results of figures 2, 3, 4, and 5, we obtain an expression for TC in
the case of double-bond coupling:

TC ∝ exp(−α1NB
2) (11)

where α1 is a constant and N ≡ Nb − 1 is the number of loops. Because in this case the
scattering is mainly from the random flux in the loops, this formula reflects the behaviour of
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Figure 3. The transmission coefficient (TC) as a function of the energy of the electron E. The unit
of E is t0. t = 0.2t0 and the other parameters are the same as those for figure 2. In the insets we
show the dependence of the transmission coefficient on E2.

states in a quasi-1D system with a series of random fluxes. For this double-chain system in a
small magnetic field, the mean free path for the scattering of the random flux can be estimated
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Figure 4. The dependence of the logarithmic transmission coefficient on the square of the intensity
of the magnetic field B2. The inset is a linear plot of the transmission coefficient as a function of
B. E = 0.2t0 and the other parameters are the same as for figure 3.

with the aid of the Fermi’s golden rule as
1

l
= πNλ0

2t2
0 sin2(kF )

〈|〈k1F |[H − 〈H 〉]|k2F 〉|2〉 (12)

where |klF 〉 is the state at the Fermi level in the lth pure chain, kF is the Fermi vector, 〈· · ·〉
denotes the ensemble average over the random structure, and the mean free path is in units of
the lattice spacing. The localization length ξ in quasi-1D systems is the mean free path times
the number of channels. From this relation one has

1

ξ
= NB2t2 δλ4

288t2
0λ0�

2
0 sin2(kF )

. (13)

By comparison of equation (13) and equation (11), we have

α1 = t2 δλ4

144t2
0λ0�

2
0 sin2(kF )

. (14)
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Figure 5. The dependence of the logarithmic transmission coefficient on the number of loops. The
upper panel is for the case of single-bond coupling and the lower panel for the case of double-
bond coupling. The other parameters are the same as for figure 4. The inset shows the details of
oscillations of the transmission coefficient with varying N for the case of double-bond coupling in
the absence of a magnetic field.

In the case of single-bond coupling, the transmission coefficient depends on E, t , and B.
For small values of E, t , and B, one can estimate TC from equation (12) as

TC ∝ 1

1 + t2(α2B2 + β2E2 + γ2)
(15)

with

α2 ∼ NB2 δλ4

144t2
0λ0�

2
0

β2 ∼ πN δλ2

80t4
0λ0

γ2 ∼ πN δλ2

120t2
0λ0

.

The numerical results are fitted by this formula, as can be seen from the figures.
In the above figures the AB oscillations are not seen because in order to observe AB

oscillations the magnetic field has to be as large as 104 G in systems with loops containing
400 to 800 sites. To investigate the behaviour of AB oscillations, in figure 6 we show TC as
a function of B for systems with loops containing 4000 to 8000 sites. It can be seen that for
both single- and double-bond cases the regular AB oscillations can be observed only if the
system is periodic in the structure of the loops. In the disordered structure the peaks become
random and the height of these peaks oscillates and generally decays as the field increases.
The decay rate increases with the system size. There is no difference in behaviour between the
single- and double-bond cases, because in a large magnetic field the randomness of the flux is
dominant.
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Figure 6. The dependence of the logarithmic transmission coefficient on the intensity of the
magnetic field. Graphs (a), (b), (c), and (d) correspond to the case of double-bond coupling; the
others correspond to the single-bond case. For graphs (a), (b), (e), and (f ) N = 5, and for the
others N = 50. For graphs (a), (c), (e), and (g) the number of sites in every loop is 6000, and for
the others the number of sites in every loop is randomly distributed from 4000 to 8000. E = 0.2t0
and t = 0.2t0. The lattice spacing is 3 Å.

4. Conclusions

We investigate the transport properties of electrons in double-chain systems with random
topological structure in the presence of a magnetic field. We discuss two types of interchain
coupling: the single-bond coupling and double-bond coupling. The electrons are scattered by
two disorder factors: (i) the random distribution of the interchain hopping integrals; (ii) the
randomness of the flux through the loops. The former is suppressed in the case of double-bond
coupling due to the quantum interference; thus the behaviour of TC in these systems purely
shows the effect of a quasi-1D sequence of random fluxes. As a result, there exist extended
states in the absence of a magnetic field but they are destroyed by applying the field and TC
is exponentially reduced by increasing N and B2. In the case of single-bond coupling, both
randomness factors have effects on the states and the states are localized in both the absence
and the presence of a magnetic field. We obtain an expression for TC from the numerical
calculations. The results may shed light on the study of quasi-1D systems with disordered
topological structure and random flux.



Q1D double-chain systems in a magnetic field 7943

Acknowledgments

This work was supported by the National Foundation of Natural Science in China, Grant No
69876020, and by the China State Key Projects of Basic Research (G1999064509).

References

[1] Abrahams E, Anderson P W, Licciardello D C and Ramkrishnan T V 1979 Phys. Rev. Lett. 42 673
[2] Dunlap D H, Wu H-L and Phillips P W 1990 Phys. Rev. Lett. 65 88
[3] Heinrichs J 1995 Phys. Rev. B 51 5699
[4] Bovier A 1990 J. Phys. A: Math. Gen. 25 1021
[5] Chen Xiaoshuang and Xiong Shi-Jie 1993 Phys. Lett. A 179 217
[6] de Moura F A B F and Lyra M L 1998 Phys. Rev. Lett. 81 3735
[7] Xiong Shi-Jie and Evangelou S N 1995 Phys. Rev. B 52 R13 079
[8] Xiong Shi-Jie, Chen Yan and Evangelou S N 1996 Phys. Rev. Lett. 77 4414


